Fish Protection Technologies for Existing Cooling Water Intake Structures and Their Costs

by

Ned Taft, Tom Cook, Jon Black, and Nate Olken

Alden Research Laboratory

A Symposium on Cooling Water Intake Technologies to Protect Aquatic Organisms

May 6-7, 2003 Hilton Crystal City at National Airport Arlington, VA

Proposed Performance Standards

- Reduce impingement mortality by 80 to 95 percent
- Reduce entrainment by 60 to 90 percent

Types of Site-Specific Factors

- Biology
- Hydraulic / Hydrodynamic
- Fouling
- Geotechnical
- Navigation and Space Requirements
- Climate

Examples of Site-Specific Factors that Influence Cost

- organisms to be protected
- flow
- debris
- biofouling
- silt
- facility type (nuclear vs. fossil)

- ambient current
- waves
- icing
- waterbody type
- water depth
- navigation and space issues
- substrate

Technology Categories

Physical Barriers

Collection Systems

Diversion Systems

Behavioral Barriers

Technologies EPA Considers Having Potential for Meeting the Standards

- Wedge Wire Screens
- Aquatic Filter Barrier (AFB)
- Modified Traveling Screens with Fish Return
- Barrier Nets
- Velocity Caps

Physical Barriers

Wedge Wire Screen

Schematic of Wedge Wire Screens Eddystone Station

7-foot Diameter Wedge Wire Screen

Status of Wedge Wire Screens

- Can be used to meet both the I and E standards
- Extensive existing performance data
- No large flow fine mesh installations

Wedge Wire Costs

EPA Cost = \$0.2 - 23MSite-Specific Cost = \$3.5 - 144M

Examples of Site-Specific Factors that Drive Cost

<u>Factor</u>

Impacts

species / lifestage

slot size

flow (slot size)

number of screens

space and water depth

amount of piping

current site config.

location

biofouling

screen material

AFB – Deployed at Lovett

AFB - Perforations

Status of Aquatic Filter Barrier (AFB)

- Can be used to meet both I & E performance standards
- Limited performance data
- Currently limited to 10 gpm/ft²
- Requires large surface area

AFB Costs

EPA Cost = \$0.8 - 3MSite-Specific Cost = \$9 - 72M

Examples of Site-Specific Factors that Drive Cost

Factor

<u>Impacts</u>

species / lifestage

perforation size

flow (perf. size)

amount of material

currents and waves

support systems

Bowline Barrier Net

Brule Barrier Net

Status of Barrier Nets

- Can be used to meet the I standard
- Performance data exists
- Species and lifestage dictates mesh size

Barrier Net Costs

EPA Cost = \$0.013 - 0.063MSite-Specific Cost = \$0.1 - 14M

Examples of Site-Specific Factors that Drive Cost

<u>Factor</u> <u>Impacts</u>

flow net area

current and waves support systems

extent of fouling support systems

Summary of Physical Barriers

- Wedge wire screens and AFB have the potential to meet the I & E performance standards
- Barrier nets are a viable alternative for meeting the I standard
- Site-specific factors affect applicability, biological effectiveness, and costs

Collection Systems

Modified Traveling Water Screens

Prairie Island Fine Mesh (0.5 mm) Screens

Pilot Scale Fine Mesh Screens – Big Bend

Status of Modified Traveling Screens

- Coarse mesh modified screens can be used to meet the I standard
- Fine mesh screens can be used to meet both the I & E standards
- Substantial data exists on effectiveness and costs
- E Survival ?

Modified Traveling Screen Costs

EPA Cost = \$0.1 - 22MSite-Specific Cost = \$0.3 - 44M

Examples of Site-Specific Factors that Drive Cost

Factor

<u>Impacts</u>

through-screen velocity

number of screens

current screen area

expand intake?

Velocity Caps

Status of Velocity Caps

Limited biological effectiveness data

 May have benefits associated with location

No site-specific cost data

Review of Site-Specific Factors that Influence Cost

- organisms to be protected
- flow
- debris
- biofouling
- silt
- facility type (nuclear vs. fossil)

- ambient current
- waves
- icing
- waterbody type
- water depth
- navigation and space issues
- substrate

Comparison of Costs

<u>Technology</u>	EPA Cost	Site-Specific Cost
Wedge Wire Screens	\$0.2 – 23M	\$3.5 – 144M
AFB	\$0.8 – 3M	\$9 – 72M
Barrier Nets	\$0.013 - 0.063M	\$0.1 – 14M
Modified Screens	\$0.1 - 22M	\$0.3 - 44M

Conclusions

- Several technologies are currently available to meet the I & E standards
- Site-specific factors will determine:
 - the applicability of a technology
 - the biological efficacy of a technology
 - the costs of installing and operating a technology

